34 research outputs found

    Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    Get PDF
    This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour

    A Multi-In and Multi-Out Dendritic Neuron Model and its Optimization

    Full text link
    Artificial neural networks (ANNs), inspired by the interconnection of real neurons, have achieved unprecedented success in various fields such as computer vision and natural language processing. Recently, a novel mathematical ANN model, known as the dendritic neuron model (DNM), has been proposed to address nonlinear problems by more accurately reflecting the structure of real neurons. However, the single-output design limits its capability to handle multi-output tasks, significantly lowering its applications. In this paper, we propose a novel multi-in and multi-out dendritic neuron model (MODN) to tackle multi-output tasks. Our core idea is to introduce a filtering matrix to the soma layer to adaptively select the desired dendrites to regress each output. Because such a matrix is designed to be learnable, MODN can explore the relationship between each dendrite and output to provide a better solution to downstream tasks. We also model a telodendron layer into MODN to simulate better the real neuron behavior. Importantly, MODN is a more general and unified framework that can be naturally specialized as the DNM by customizing the filtering matrix. To explore the optimization of MODN, we investigate both heuristic and gradient-based optimizers and introduce a 2-step training method for MODN. Extensive experimental results performed on 11 datasets on both binary and multi-class classification tasks demonstrate the effectiveness of MODN, with respect to accuracy, convergence, and generality

    Graph Planarization Problem Optimization Based on Triple-Valued Gravitational Search Algorithm

    Get PDF
    This article presents a triple-valued gravitational search algorithm (TGSA) to tackle the graph planarization problem (GPP). GPP is one of the most important tasks in graph theory, and has proved to be an NP-hard problem. To solve it, TGSA uses a triple-valued encoding scheme and models the search space into a triangular hypercube quantitatively based on the well-known single-row routing representation method. The agents in TGSA, whose interactions are driven by the gravity law, move toward the global optimal position gradually. The position updating rule for each agent is based on two indices: one is a velocity index which is a function of the current velocity of the agent, and the other is a population index based on the cumulative information in the whole population. To verify the performance of the algorithm, 21 benchmark instances are tested. Experimental results indicate that TGSA can solve the GPP by finding its maximum planar subgraph and embedding the resulting edges into a plane simultaneously. Compared with traditional algorithms, a novelty of TGSA is that it can find multiple optimal solutions for the GPP. Comparative results also demonstrate that TGSA outperforms the traditional meta-heuristics in terms of the solution qualities within reasonable computational times. © 2013 Institute of Electrical Engineers of Japan

    A stochastic dynamic local search method for learning Multiple-Valued Logic networks

    Get PDF
    金沢大学理工研究域電子情報学系In this paper, we propose a stochastic dynamic local search (SDLS) method for Multiple-Valued Logic (MVL) learning by introducing stochastic dynamics into the traditional local search method. The proposed learning network maintains some trends of quick descent to either global minimum or a local minimum, and at the same time has some chance of escaping from local minima by permitting temporary error increases during learning. Thus the network may eventually reach the global minimum state or its best approximation with very high probability. Simulation results show that the proposed algorithm has the superior abilities to find the global minimum for the MVL network learning within reasonable number of iterations. Copyright © 2007 The Institute of Electronics, Information and Communication Engineers

    A Chaotic Clonal Selection Algorithm and Its Application to Synthesize Multiple-Valued Logic Function

    Get PDF
    In this paper, a chaotic clonal selection algorithm (CCSA) is proposed to synthesize multiple-valued logic (MVL) functions. The MVL function is realized in a multiple-valued sum-of-products expression where product is indicated by MIN and sum by TSUM. The proposed CCSA, in which chaos is incorporated into the clonal selection algorithm to initialize antibodies and maintain the population diversity, is utilized to learn a given target MVL truth table. Furthermore, an adaptive length strategy of antibodies is also introduced to reduce the computational complexity, whereas an improved affinity function enables the algorithm to find less product terms for an MVL function. Simulation results based on a large number of MVL functions demonstrate the efficiency of the proposed method when compared with other traditional methodologies. © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc

    A Multi-Learning Immune Algorithm for Numerical Optimization

    No full text
    corecore